Data-Driven Fuzzy Modeling: Transparency and Complexity Issues

نویسنده

  • Robert Babuška
چکیده

Recently, the interest in data-driven approaches to the modeling of nonlinear processes has increased. Techniques based on fuzzy sets and rule-based systems have proven suitable mainly because of their potential to yield transparent models that are at the same time reasonably accurate. Many of the data-driven fuzzy modeling algorithms, however, aim primarily at good numerical approximation, while little attention is paid to the complexity and interpretability of the resulting model. This paper deals with the issues of complexity and transparency in rule-based fuzzy models obtained through various data-driven identification algorithms. They include grid partition approaches and tree construction algorithms, fuzzy clustering and nonlinear parameter-optimization methods. Different rule base reduction techniques are addressed as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact fuzzy models through complexity reduction and evolutionary optimization

Genetic Algorithms (GAs) and other evolutionary optimization methods to design fuzzy rules from data for systems modeling and classification have received much attention in recent literature. We show that different tools for modeling and complexity reduction can be favorably combined in a scheme with GA-based parameter optimization. Fuzzy clustering, rule reduction, rule base simplification and...

متن کامل

Improving the interpretability of data-driven evolving fuzzy systems

This paper develops methods for reducing the complexity and, thereby, improving the linguistic interpretability of Takagi-Sugeno fuzzy systems that are learned online in a data-driven, incremental way. In order to ensure the transparency of the evolving fuzzy system at any time, complexity reduction must be performed in an online mode as well. Our methods are evaluated on high-dimensional data ...

متن کامل

Rule-based modeling: precision and transparency

This article is a reaction to recent publications on rulebased modeling using fuzzy set theory and fuzzy logic. The interest in fuzzy systems has recently shifted from the seminal ideas about complexity reduction toward data-driven construction of fuzzy systems. Many algorithms have been introduced that aim at numerical approximation of functions by rules, but pay little attention to the interp...

متن کامل

Construction of Fuzzy Systems –Interplay between Precision and Transparency

In recent years, we have witnessed a strong emphasis on high performance and precision of fuzzy systems. Many publications are focused on data driven approaches, i.e., the construction of fuzzy systems from data and applying them in areas like data mining, pattern recognition, prediction or control. In such applications, fuzzy system inevitably must be compared with other inductive methods, lik...

متن کامل

Transparent Fuzzy Modeling using Fuzzy Clustering and GA’s

A combined approach to data-driven fuzzy rule-based modeling is described. The rules of an initial model are derived from data by means of a supervised clustering method that to a certain degree ensures the transparency of the resulting rule base. This model is, however, suboptimal, and a realcoded genetic algorithm (GA) is proposed to optimize simultaneously both the antecedent and the consequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999